Sir_Kay

Kaysman Official Website


  • 首页

  • 分类

  • 标签

  • 归档

  • 搜索

Codeforces 1295A~D 题解

发表于 2020-01-30 更新于 2020-02-01 分类于 算法 , Codeforces
本文字数: 26k 阅读时长 ≈ 23 分钟

Codeforces 1295A~D 题解

Codeforces 1295A Display The Number 题解

题意

你需要在一个电子数字屏幕上显示一个数,每个数码都会占若干个线段。如下图,$1$占$2$个线段,$7$占$3$个线段。
https://espresso.codeforces.com/39cedf07ce9ef18d7ec074f319640a9857b9f8cb.png
给定$n$ ($2\le n\le10^5$),输出一个最大的数,使得它占用的线段数量小于等于$n$。

题解

既然要数最大,肯定是要数位最多,$1$占的线段最少,肯定要尽可能多地用$1$。

如果$n$是偶数,那么全都用$1$。

如果$n$是奇数,发现$7$只占$3$个线段,那么第一个数码用$7$,其它的都用$1$即可。

程序

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
// #pragma GCC optimize(2)
// #pragma G++ optimize(2)
// #pragma comment(linker,"/STACK:102400000,102400000")

// #include <bits/stdc++.h>
#include <map>
#include <set>
#include <list>
#include <array>
#include <cfenv>
#include <cmath>
#include <ctime>
#include <deque>
#include <mutex>
#include <queue>
#include <ratio>
#include <regex>
#include <stack>
#include <tuple>
#include <atomic>
#include <bitset>
#include <cctype>
#include <cerrno>
#include <cfloat>
#include <chrono>
#include <cstdio>
#include <cwchar>
#include <future>
#include <limits>
#include <locale>
#include <memory>
#include <random>
#include <string>
#include <thread>
#include <vector>
#include <cassert>
#include <climits>
#include <clocale>
#include <complex>
#include <csetjmp>
#include <csignal>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <cstring>
#include <ctgmath>
#include <cwctype>
#include <fstream>
#include <iomanip>
#include <numeric>
#include <sstream>
#include <ccomplex>
#include <cstdbool>
#include <iostream>
#include <typeinfo>
#include <valarray>
#include <algorithm>
#include <cinttypes>
#include <cstdalign>
#include <stdexcept>
#include <typeindex>
#include <functional>
#include <forward_list>
#include <system_error>
#include <unordered_map>
#include <unordered_set>
#include <scoped_allocator>
#include <condition_variable>
// #include <conio.h>
// #include <windows.h>
using namespace std;

typedef long long LL;
typedef unsigned int ui;
typedef unsigned long long ull;
typedef float fl;
typedef double ld;
typedef long double LD;
typedef pair<int,int> pii;
#if (WIN32) || (WIN64) || (__WIN32) || (__WIN64) || (_WIN32) || (_WIN64) || (WINDOWS)
#define lld "%I64d"
#define llu "%I64u"
#else
#define lld "%lld"
#define llu "%llu"
#endif
#define ui(n) ((unsigned int)(n))
#define LL(n) ((long long)(n))
#define ull(n) ((unsigned long long)(n))
#define fl(n) ((float)(n))
#define ld(n) ((double)(n))
#define LD(n) ((long double)(n))
#define char(n) ((char)(n))
#define Bool(n) ((bool)(n))
#define fixpoint(n) fixed<<setprecision(n)

const int INF=1061109567;
const int NINF=-1044266559;
const LL LINF=4557430888798830399;
const ld eps=1e-15;
#define MOD (1000000007)
#define PI (3.1415926535897932384626433832795028841971)

/*
#define MB_LEN_MAX 5
#define SHRT_MIN (-32768)
#define SHRT_MAX 32767
#define USHRT_MAX 0xffffU
#define INT_MIN (-2147483647 - 1)
#define INT_MAX 2147483647
#define UINT_MAX 0xffffffffU
#define LONG_MIN (-2147483647L - 1)
#define LONG_MAX 2147483647L
#define ULONG_MAX 0xffffffffUL
#define LLONG_MAX 9223372036854775807ll
#define LLONG_MIN (-9223372036854775807ll - 1)
#define ULLONG_MAX 0xffffffffffffffffull
*/

#define MP make_pair
#define MT make_tuple
#define All(a) (a).begin(),(a).end()
#define pall(a) (a).rbegin(),(a).rend()
#define Log(x,y) log(x)/log(y)
#define SZ(a) ((int)(a).size())
#define rep(i,n) for(int i=0;i<((int)(n));i++)
#define rep1(i,n) for(int i=1;i<=((int)(n));i++)
#define repa(i,a,n) for(int i=((int)(a));i<((int)(n));i++)
#define repa1(i,a,n) for(int i=((int)(a));i<=((int)(n));i++)
#define repd(i,n) for(int i=((int)(n))-1;i>=0;i--)
#define repd1(i,n) for(int i=((int)(n));i>=1;i--)
#define repda(i,n,a) for(int i=((int)(n));i>((int)(a));i--)
#define repda1(i,n,a) for(int i=((int)(n));i>=((int)(a));i--)
#define FOR(i,a,n,step) for(int i=((int)(a));i<((int)(n));i+=((int)(step)))
#define repv(itr,v) for(__typeof((v).begin()) itr=(v).begin();itr!=(v).end();itr++)
#define repV(i,v) for(auto i:v)
#define repE(i,v) for(auto &i:v)
#define MS(x,y) memset(x,y,sizeof(x))
#define MC(x) MS(x,0)
#define MINF(x) MS(x,63)
#define MCP(x,y) memcpy(x,y,sizeof(y))
#define sqr(x) ((x)*(x))
#define UN(v) sort(All(v)),v.erase(unique(All(v)),v.end())
#define filein(x) freopen(x,"r",stdin)
#define fileout(x) freopen(x,"w",stdout)
#define fileio(x)\
freopen(x".in","r",stdin);\
freopen(x".out","w",stdout)
#define filein2(filename,name) ifstream name(filename,ios::in)
#define fileout2(filename,name) ofstream name(filename,ios::out)
#define file(filename,name) fstream name(filename,ios::in|ios::out)
#define Pause system("pause")
#define Cls system("cls")
#define fs first
#define sc second
#define PC(x) putchar(x)
#define GC(x) x=getchar()
#define Endl PC('\n')
#define SF scanf
#define PF printf

#define j0 J0
#define j1 J1
#define jn Jn
#define y0 Y0
#define y1 Y1
#define yn Yn

inline int Read()
{
int x=0,w=0;char ch=0;while(!isdigit(ch)){w|=ch=='-';ch=getchar();}while(isdigit(ch))x=(x<<3)+(x<<1)+(ch^48),ch=getchar();
return w?-x:x;
}
inline void Write(int x){if(x<0)putchar('-'),x=-x;if(x>9)Write(x/10);putchar(x%10+'0');}

inline LL powmod(LL a,LL b){LL res=1;a%=MOD;assert(b>=0);for(;b;b>>=1){if(b&1)res=res*a%MOD;a=a*a%MOD;}return res%MOD;}
inline LL gcdll(LL a,LL b){return b?gcdll(b,a%b):a;}
const int dx[]={0,1,0,-1,1,-1,-1,1};
const int dy[]={1,0,-1,0,-1,-1,1,1};
/************************************************************BEGIN************************************************************/
const int maxn=100010;

int t,n;
string ans;

int main()
{
cin>>t;
while(t--)
{
cin>>n;

ans=(n%2==0?"1":"7");
n-=(n%2==0?2:3);

while(n)
{
ans+='1';
n-=2;
}

cout<<ans<<endl;
}

return 0;
}
/*************************************************************END**************************************************************/

Codeforces 1295B Infinite Prefixes 题解

题意

给定$n,x$ ($1\le n\le10^5,-10^9\le x\le10^9$)和一个长度为$n$的01字符串$s$,有一个由无限个$s$组成的字符串$t=ssss\dots$。

求有多少个$t$的前缀字符串,使得它的平衡度等于$x$。一个字符串$q$的平衡度是指$cnt_{0,q}-cnt_{1,q}$,$cnt_{0,q}$是指$q$中有多少个字符0,$cnt_{1,q}$是指$q$中有多少个字符1。如果有无限个,输出$-1$。

注意:前缀字符串包括空串。

题解

数组$d_i (0\le i\le n)$维护字符串$s$长度为$i$的前缀字符串的$cnt_0-cnt_1$。

首先考虑答案为$-1$的情况:$d_n=0$且$d_i=x$,这样才能保证$s$无论重复多少次,在后面加上长度为$i$的前缀,此时的字符串的平衡度等于$x$。

再来考虑答案不是$-1$的情况:记$t$的一个前缀

枚举$b$,然后看$x-d_b$是否与$d_n$同号且能整除$d_n$,如果可以,那么就是一个可行的答案。

注意:不要$\%0$。

程序

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
// #pragma GCC optimize(2)
// #pragma G++ optimize(2)
// #pragma comment(linker,"/STACK:102400000,102400000")

// #include <bits/stdc++.h>
#include <map>
#include <set>
#include <list>
#include <array>
#include <cfenv>
#include <cmath>
#include <ctime>
#include <deque>
#include <mutex>
#include <queue>
#include <ratio>
#include <regex>
#include <stack>
#include <tuple>
#include <atomic>
#include <bitset>
#include <cctype>
#include <cerrno>
#include <cfloat>
#include <chrono>
#include <cstdio>
#include <cwchar>
#include <future>
#include <limits>
#include <locale>
#include <memory>
#include <random>
#include <string>
#include <thread>
#include <vector>
#include <cassert>
#include <climits>
#include <clocale>
#include <complex>
#include <csetjmp>
#include <csignal>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <cstring>
#include <ctgmath>
#include <cwctype>
#include <fstream>
#include <iomanip>
#include <numeric>
#include <sstream>
#include <ccomplex>
#include <cstdbool>
#include <iostream>
#include <typeinfo>
#include <valarray>
#include <algorithm>
#include <cinttypes>
#include <cstdalign>
#include <stdexcept>
#include <typeindex>
#include <functional>
#include <forward_list>
#include <system_error>
#include <unordered_map>
#include <unordered_set>
#include <scoped_allocator>
#include <condition_variable>
// #include <conio.h>
// #include <windows.h>
using namespace std;

typedef long long LL;
typedef unsigned int ui;
typedef unsigned long long ull;
typedef float fl;
typedef double ld;
typedef long double LD;
typedef pair<int,int> pii;
#if (WIN32) || (WIN64) || (__WIN32) || (__WIN64) || (_WIN32) || (_WIN64) || (WINDOWS)
#define lld "%I64d"
#define llu "%I64u"
#else
#define lld "%lld"
#define llu "%llu"
#endif
#define ui(n) ((unsigned int)(n))
#define LL(n) ((long long)(n))
#define ull(n) ((unsigned long long)(n))
#define fl(n) ((float)(n))
#define ld(n) ((double)(n))
#define LD(n) ((long double)(n))
#define char(n) ((char)(n))
#define Bool(n) ((bool)(n))
#define fixpoint(n) fixed<<setprecision(n)

const int INF=1061109567;
const int NINF=-1044266559;
const LL LINF=4557430888798830399;
const ld eps=1e-15;
#define MOD (1000000007)
#define PI (3.1415926535897932384626433832795028841971)

/*
#define MB_LEN_MAX 5
#define SHRT_MIN (-32768)
#define SHRT_MAX 32767
#define USHRT_MAX 0xffffU
#define INT_MIN (-2147483647 - 1)
#define INT_MAX 2147483647
#define UINT_MAX 0xffffffffU
#define LONG_MIN (-2147483647L - 1)
#define LONG_MAX 2147483647L
#define ULONG_MAX 0xffffffffUL
#define LLONG_MAX 9223372036854775807ll
#define LLONG_MIN (-9223372036854775807ll - 1)
#define ULLONG_MAX 0xffffffffffffffffull
*/

#define MP make_pair
#define MT make_tuple
#define All(a) (a).begin(),(a).end()
#define pall(a) (a).rbegin(),(a).rend()
#define Log(x,y) log(x)/log(y)
#define SZ(a) ((int)(a).size())
#define rep(i,n) for(int i=0;i<((int)(n));i++)
#define rep1(i,n) for(int i=1;i<=((int)(n));i++)
#define repa(i,a,n) for(int i=((int)(a));i<((int)(n));i++)
#define repa1(i,a,n) for(int i=((int)(a));i<=((int)(n));i++)
#define repd(i,n) for(int i=((int)(n))-1;i>=0;i--)
#define repd1(i,n) for(int i=((int)(n));i>=1;i--)
#define repda(i,n,a) for(int i=((int)(n));i>((int)(a));i--)
#define repda1(i,n,a) for(int i=((int)(n));i>=((int)(a));i--)
#define FOR(i,a,n,step) for(int i=((int)(a));i<((int)(n));i+=((int)(step)))
#define repv(itr,v) for(__typeof((v).begin()) itr=(v).begin();itr!=(v).end();itr++)
#define repV(i,v) for(auto i:v)
#define repE(i,v) for(auto &i:v)
#define MS(x,y) memset(x,y,sizeof(x))
#define MC(x) MS(x,0)
#define MINF(x) MS(x,63)
#define MCP(x,y) memcpy(x,y,sizeof(y))
#define sqr(x) ((x)*(x))
#define UN(v) sort(All(v)),v.erase(unique(All(v)),v.end())
#define filein(x) freopen(x,"r",stdin)
#define fileout(x) freopen(x,"w",stdout)
#define fileio(x)\
freopen(x".in","r",stdin);\
freopen(x".out","w",stdout)
#define filein2(filename,name) ifstream name(filename,ios::in)
#define fileout2(filename,name) ofstream name(filename,ios::out)
#define file(filename,name) fstream name(filename,ios::in|ios::out)
#define Pause system("pause")
#define Cls system("cls")
#define fs first
#define sc second
#define PC(x) putchar(x)
#define GC(x) x=getchar()
#define Endl PC('\n')
#define SF scanf
#define PF printf

#define j0 J0
#define j1 J1
#define jn Jn
#define y0 Y0
#define y1 Y1
#define yn Yn

inline int Read()
{
int x=0,w=0;char ch=0;while(!isdigit(ch)){w|=ch=='-';ch=getchar();}while(isdigit(ch))x=(x<<3)+(x<<1)+(ch^48),ch=getchar();
return w?-x:x;
}
inline void Write(int x){if(x<0)putchar('-'),x=-x;if(x>9)Write(x/10);putchar(x%10+'0');}

inline LL powmod(LL a,LL b){LL res=1;a%=MOD;assert(b>=0);for(;b;b>>=1){if(b&1)res=res*a%MOD;a=a*a%MOD;}return res%MOD;}
inline LL gcdll(LL a,LL b){return b?gcdll(b,a%b):a;}
const int dx[]={0,1,0,-1,1,-1,-1,1};
const int dy[]={1,0,-1,0,-1,-1,1,1};
/************************************************************BEGIN************************************************************/
const int maxn=100010;

int t,n,x,d[maxn],ans;
string s;

int main()
{
cin>>t;
while(t--)
{
ans=0;

cin>>n>>x>>s;s=" "+s;

rep1(i,n)
{
if(s[i]=='0') d[i]=d[i-1]+1; else d[i]=d[i-1]-1;
}

if(d[n]==0)
{
bool f=0;
rep1(i,n) if(d[i]==x) f=1;
if(f)
{
cout<<-1<<endl;
continue;
}
}

rep(i,n)
{
if(1ll*(x-d[i])*d[n]>=0)
{
if(d[n]==0)
{
if(x-d[i]==0) ans++;
}
else if(abs(x-d[i])%abs(d[n])==0) ans++;
}
}

cout<<ans<<endl;
}

return 0;
}
/*************************************************************END**************************************************************/

Codeforces 1295C Obtain The String 题解

题意

给定两个长度在$10^5$之内的字符串$s,t$。你有一个空串$z$,你希望把它变成$t$。

每一步中,你可以在$s$中选出一个子序列$w$,然后令$z=z+w$。

求把$z$变成$t$的最小步数。如果不可能变成$t$,输出$-1$。

题解

答案是$-1$的情况很容易:如果$t$中的某个字符$s$中没有,那么就不可能得到$t$。

考虑贪心。

如果当前考虑的字符为$t_i$,在$s$中找到一个下标最小的字符$s_j=t_i$且$j$大于$t_{i-1}$在$s$中选择的位置。

  • 如果有这样的$s_j$,选择$s_j$,继续。
  • 如果没有这样的$s_j$,只能重新找一个子序列,选择$s$中第一个等于$t_i$的字符即可。

程序

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
// #pragma GCC optimize(2)
// #pragma G++ optimize(2)
// #pragma comment(linker,"/STACK:102400000,102400000")

// #include <bits/stdc++.h>
#include <map>
#include <set>
#include <list>
#include <array>
#include <cfenv>
#include <cmath>
#include <ctime>
#include <deque>
#include <mutex>
#include <queue>
#include <ratio>
#include <regex>
#include <stack>
#include <tuple>
#include <atomic>
#include <bitset>
#include <cctype>
#include <cerrno>
#include <cfloat>
#include <chrono>
#include <cstdio>
#include <cwchar>
#include <future>
#include <limits>
#include <locale>
#include <memory>
#include <random>
#include <string>
#include <thread>
#include <vector>
#include <cassert>
#include <climits>
#include <clocale>
#include <complex>
#include <csetjmp>
#include <csignal>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <cstring>
#include <ctgmath>
#include <cwctype>
#include <fstream>
#include <iomanip>
#include <numeric>
#include <sstream>
#include <ccomplex>
#include <cstdbool>
#include <iostream>
#include <typeinfo>
#include <valarray>
#include <algorithm>
#include <cinttypes>
#include <cstdalign>
#include <stdexcept>
#include <typeindex>
#include <functional>
#include <forward_list>
#include <system_error>
#include <unordered_map>
#include <unordered_set>
#include <scoped_allocator>
#include <condition_variable>
// #include <conio.h>
// #include <windows.h>
using namespace std;

typedef long long LL;
typedef unsigned int ui;
typedef unsigned long long ull;
typedef float fl;
typedef double ld;
typedef long double LD;
typedef pair<int,int> pii;
#if (WIN32) || (WIN64) || (__WIN32) || (__WIN64) || (_WIN32) || (_WIN64) || (WINDOWS)
#define lld "%I64d"
#define llu "%I64u"
#else
#define lld "%lld"
#define llu "%llu"
#endif
#define ui(n) ((unsigned int)(n))
#define LL(n) ((long long)(n))
#define ull(n) ((unsigned long long)(n))
#define fl(n) ((float)(n))
#define ld(n) ((double)(n))
#define LD(n) ((long double)(n))
#define char(n) ((char)(n))
#define Bool(n) ((bool)(n))
#define fixpoint(n) fixed<<setprecision(n)

const int INF=1061109567;
const int NINF=-1044266559;
const LL LINF=4557430888798830399;
const ld eps=1e-15;
#define MOD (1000000007)
#define PI (3.1415926535897932384626433832795028841971)

/*
#define MB_LEN_MAX 5
#define SHRT_MIN (-32768)
#define SHRT_MAX 32767
#define USHRT_MAX 0xffffU
#define INT_MIN (-2147483647 - 1)
#define INT_MAX 2147483647
#define UINT_MAX 0xffffffffU
#define LONG_MIN (-2147483647L - 1)
#define LONG_MAX 2147483647L
#define ULONG_MAX 0xffffffffUL
#define LLONG_MAX 9223372036854775807ll
#define LLONG_MIN (-9223372036854775807ll - 1)
#define ULLONG_MAX 0xffffffffffffffffull
*/

#define MP make_pair
#define MT make_tuple
#define All(a) (a).begin(),(a).end()
#define pall(a) (a).rbegin(),(a).rend()
#define Log(x,y) log(x)/log(y)
#define SZ(a) ((int)(a).size())
#define rep(i,n) for(int i=0;i<((int)(n));i++)
#define rep1(i,n) for(int i=1;i<=((int)(n));i++)
#define repa(i,a,n) for(int i=((int)(a));i<((int)(n));i++)
#define repa1(i,a,n) for(int i=((int)(a));i<=((int)(n));i++)
#define repd(i,n) for(int i=((int)(n))-1;i>=0;i--)
#define repd1(i,n) for(int i=((int)(n));i>=1;i--)
#define repda(i,n,a) for(int i=((int)(n));i>((int)(a));i--)
#define repda1(i,n,a) for(int i=((int)(n));i>=((int)(a));i--)
#define FOR(i,a,n,step) for(int i=((int)(a));i<((int)(n));i+=((int)(step)))
#define repv(itr,v) for(__typeof((v).begin()) itr=(v).begin();itr!=(v).end();itr++)
#define repV(i,v) for(auto i:v)
#define repE(i,v) for(auto &i:v)
#define MS(x,y) memset(x,y,sizeof(x))
#define MC(x) MS(x,0)
#define MINF(x) MS(x,63)
#define MCP(x,y) memcpy(x,y,sizeof(y))
#define sqr(x) ((x)*(x))
#define UN(v) sort(All(v)),v.erase(unique(All(v)),v.end())
#define filein(x) freopen(x,"r",stdin)
#define fileout(x) freopen(x,"w",stdout)
#define fileio(x)\
freopen(x".in","r",stdin);\
freopen(x".out","w",stdout)
#define filein2(filename,name) ifstream name(filename,ios::in)
#define fileout2(filename,name) ofstream name(filename,ios::out)
#define file(filename,name) fstream name(filename,ios::in|ios::out)
#define Pause system("pause")
#define Cls system("cls")
#define fs first
#define sc second
#define PC(x) putchar(x)
#define GC(x) x=getchar()
#define Endl PC('\n')
#define SF scanf
#define PF printf

#define j0 J0
#define j1 J1
#define jn Jn
#define y0 Y0
#define y1 Y1
#define yn Yn

inline int Read()
{
int x=0,w=0;char ch=0;while(!isdigit(ch)){w|=ch=='-';ch=getchar();}while(isdigit(ch))x=(x<<3)+(x<<1)+(ch^48),ch=getchar();
return w?-x:x;
}
inline void Write(int x){if(x<0)putchar('-'),x=-x;if(x>9)Write(x/10);putchar(x%10+'0');}

inline LL powmod(LL a,LL b){LL res=1;a%=MOD;assert(b>=0);for(;b;b>>=1){if(b&1)res=res*a%MOD;a=a*a%MOD;}return res%MOD;}
inline LL gcdll(LL a,LL b){return b?gcdll(b,a%b):a;}
const int dx[]={0,1,0,-1,1,-1,-1,1};
const int dy[]={1,0,-1,0,-1,-1,1,1};
/************************************************************BEGIN************************************************************/
const int maxn=100010;

int T,has[2][30],fail,k,ans;
string s,t;
vector<int> v[30];

int main()
{
cin>>T;
while(T--)
{
MC(has);
fail=ans=0;
k=-1;
rep(i,26) v[i].clear();

cin>>s>>t;

rep(i,s.size())
{
has[0][s[i]-'a']=1;
v[s[i]-'a'].push_back(i);
}
repV(i,t) has[1][i-'a']=1;

rep(i,26) if(has[0][i]==0&&has[1][i]==1) fail=1;
if(fail)
{
cout<<-1<<endl;
continue;
}

repV(id,t)
{
int i=id-'a';

int l=upper_bound(All(v[i]),k)-v[i].begin();
if(l>=v[i].size())
{
k=*upper_bound(All(v[i]),-1);
ans++;
}
else
{
k=v[i][l];
}
}

ans++;

cout<<ans<<endl;
}

return 0;
}
/*************************************************************END**************************************************************/

Codeforces 1295D Same GCDs 题解

题意

给定两个整数$a,m$ ($1\le a<m\le10^{10}$),求整数$x$的个数,满足$0\le x<m$且$\gcd(a,m)=\gcd(a+x,m)$。

题解

设$\gcd(a,m)=\gcd(a+x,m)=d$,再设$a=d\cdot p,m=d\cdot q,x=d\cdot r$,

则$\gcd(p,q)=1$,相当于求$r\in[0,q)$中使得$\gcd(p+r,q)=1$的个数。

其实就是求$[p,p+q)$中与$q$互质的数的个数

$\Longrightarrow$ $[p,q]$和$[q+1,p+q)$中与$q$互质的数的个数

$\Longrightarrow$ $[p,q]$和$[1,p)$中与$q$互质的数的个数

$\Longrightarrow$ $[1,q]$中与$q$互质的数的个数

$\Longrightarrow$ $\phi(q)$

$\Longrightarrow$ $\phi\left(\frac{m}{\gcd(a,m)}\right)$。

注:$\phi$为欧拉函数。

程序

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
// #pragma GCC optimize(2)
// #pragma G++ optimize(2)
// #pragma comment(linker,"/STACK:102400000,102400000")

// #include <bits/stdc++.h>
#include <map>
#include <set>
#include <list>
#include <array>
#include <cfenv>
#include <cmath>
#include <ctime>
#include <deque>
#include <mutex>
#include <queue>
#include <ratio>
#include <regex>
#include <stack>
#include <tuple>
#include <atomic>
#include <bitset>
#include <cctype>
#include <cerrno>
#include <cfloat>
#include <chrono>
#include <cstdio>
#include <cwchar>
#include <future>
#include <limits>
#include <locale>
#include <memory>
#include <random>
#include <string>
#include <thread>
#include <vector>
#include <cassert>
#include <climits>
#include <clocale>
#include <complex>
#include <csetjmp>
#include <csignal>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <cstring>
#include <ctgmath>
#include <cwctype>
#include <fstream>
#include <iomanip>
#include <numeric>
#include <sstream>
#include <ccomplex>
#include <cstdbool>
#include <iostream>
#include <typeinfo>
#include <valarray>
#include <algorithm>
#include <cinttypes>
#include <cstdalign>
#include <stdexcept>
#include <typeindex>
#include <functional>
#include <forward_list>
#include <system_error>
#include <unordered_map>
#include <unordered_set>
#include <scoped_allocator>
#include <condition_variable>
// #include <conio.h>
// #include <windows.h>
using namespace std;

typedef long long LL;
typedef unsigned int ui;
typedef unsigned long long ull;
typedef float fl;
typedef double ld;
typedef long double LD;
typedef pair<int,int> pii;
#if (WIN32) || (WIN64) || (__WIN32) || (__WIN64) || (_WIN32) || (_WIN64) || (WINDOWS)
#define lld "%I64d"
#define llu "%I64u"
#else
#define lld "%lld"
#define llu "%llu"
#endif
#define ui(n) ((unsigned int)(n))
#define LL(n) ((long long)(n))
#define ull(n) ((unsigned long long)(n))
#define fl(n) ((float)(n))
#define ld(n) ((double)(n))
#define LD(n) ((long double)(n))
#define char(n) ((char)(n))
#define Bool(n) ((bool)(n))
#define fixpoint(n) fixed<<setprecision(n)

const int INF=1061109567;
const int NINF=-1044266559;
const LL LINF=4557430888798830399;
const ld eps=1e-15;
#define MOD (1000000007)
#define PI (3.1415926535897932384626433832795028841971)

/*
#define MB_LEN_MAX 5
#define SHRT_MIN (-32768)
#define SHRT_MAX 32767
#define USHRT_MAX 0xffffU
#define INT_MIN (-2147483647 - 1)
#define INT_MAX 2147483647
#define UINT_MAX 0xffffffffU
#define LONG_MIN (-2147483647L - 1)
#define LONG_MAX 2147483647L
#define ULONG_MAX 0xffffffffUL
#define LLONG_MAX 9223372036854775807ll
#define LLONG_MIN (-9223372036854775807ll - 1)
#define ULLONG_MAX 0xffffffffffffffffull
*/

#define MP make_pair
#define MT make_tuple
#define All(a) (a).begin(),(a).end()
#define pall(a) (a).rbegin(),(a).rend()
#define Log(x,y) log(x)/log(y)
#define SZ(a) ((int)(a).size())
#define rep(i,n) for(int i=0;i<((int)(n));i++)
#define rep1(i,n) for(int i=1;i<=((int)(n));i++)
#define repa(i,a,n) for(int i=((int)(a));i<((int)(n));i++)
#define repa1(i,a,n) for(int i=((int)(a));i<=((int)(n));i++)
#define repd(i,n) for(int i=((int)(n))-1;i>=0;i--)
#define repd1(i,n) for(int i=((int)(n));i>=1;i--)
#define repda(i,n,a) for(int i=((int)(n));i>((int)(a));i--)
#define repda1(i,n,a) for(int i=((int)(n));i>=((int)(a));i--)
#define FOR(i,a,n,step) for(int i=((int)(a));i<((int)(n));i+=((int)(step)))
#define repv(itr,v) for(__typeof((v).begin()) itr=(v).begin();itr!=(v).end();itr++)
#define repV(i,v) for(auto i:v)
#define repE(i,v) for(auto &i:v)
#define MS(x,y) memset(x,y,sizeof(x))
#define MC(x) MS(x,0)
#define MINF(x) MS(x,63)
#define MCP(x,y) memcpy(x,y,sizeof(y))
#define sqr(x) ((x)*(x))
#define UN(v) sort(All(v)),v.erase(unique(All(v)),v.end())
#define filein(x) freopen(x,"r",stdin)
#define fileout(x) freopen(x,"w",stdout)
#define fileio(x)\
freopen(x".in","r",stdin);\
freopen(x".out","w",stdout)
#define filein2(filename,name) ifstream name(filename,ios::in)
#define fileout2(filename,name) ofstream name(filename,ios::out)
#define file(filename,name) fstream name(filename,ios::in|ios::out)
#define Pause system("pause")
#define Cls system("cls")
#define fs first
#define sc second
#define PC(x) putchar(x)
#define GC(x) x=getchar()
#define Endl PC('\n')
#define SF scanf
#define PF printf

#define j0 J0
#define j1 J1
#define jn Jn
#define y0 Y0
#define y1 Y1
#define yn Yn

inline int Read()
{
int x=0,w=0;char ch=0;while(!isdigit(ch)){w|=ch=='-';ch=getchar();}while(isdigit(ch))x=(x<<3)+(x<<1)+(ch^48),ch=getchar();
return w?-x:x;
}
inline void Write(int x){if(x<0)putchar('-'),x=-x;if(x>9)Write(x/10);putchar(x%10+'0');}

inline LL powmod(LL a,LL b){LL res=1;a%=MOD;assert(b>=0);for(;b;b>>=1){if(b&1)res=res*a%MOD;a=a*a%MOD;}return res%MOD;}
inline LL gcdll(LL a,LL b){return b?gcdll(b,a%b):a;}
const int dx[]={0,1,0,-1,1,-1,-1,1};
const int dy[]={1,0,-1,0,-1,-1,1,1};
/************************************************************BEGIN************************************************************/
const int maxn=INF;

int t;
LL a,m,n,ans;

inline void Find()
{
ans=n;
for(int i=2;1ll*i*i<=n;i++) if(n%i==0)
{
ans=ans/i*(i-1);
while(n%i==0) n/=i;
}

if(n>1) ans=ans/n*(n-1);
}

int main()
{
cin>>t;
while(t--)
{
cin>>a>>m;
n=m/gcdll(a,m);

Find();

cout<<ans<<endl;
}

return 0;
}
/*************************************************************END**************************************************************/
__EOF__
Codeforces 1279A~D 题解
  • 文章目录
  • 站点概览
Sir_Kay

Sir_Kay

Kaysman #1 Sir_Kay
33 日志
6 分类
34 标签
RSS
Main site Wikipedia GitHub GitLab
Creative Commons
  1. 1. Codeforces 1295A~D 题解
    1. 1.1. Codeforces 1295A Display The Number 题解
      1. 1.1.1. 题意
      2. 1.1.2. 题解
      3. 1.1.3. 程序
    2. 1.2. Codeforces 1295B Infinite Prefixes 题解
      1. 1.2.1. 题意
      2. 1.2.2. 题解
      3. 1.2.3. 程序
    3. 1.3. Codeforces 1295C Obtain The String 题解
      1. 1.3.1. 题意
      2. 1.3.2. 题解
      3. 1.3.3. 程序
    4. 1.4. Codeforces 1295D Same GCDs 题解
      1. 1.4.1. 题意
      2. 1.4.2. 题解
      3. 1.4.3. 程序
0%
© 2019 – 2020 Sir_Kay